Systems of Equations: Consistency and Dependency

A system of equations is consistent if it has at least one solution. A system is inconsistent if it has no solution.

Two Variables

In a system of two equations in two variables, the equations are dependent if one equation is a multiple of the other. Dependent systems have an infinite number of solutions - every point is a solution.

Three Variables

In a system of three equations in three variables, if the system reduces to two equations in two variables where one equation is a multiple of the other, the system is dependent.

Dependent systems produce the true equation $0=0$, and are always consistent.
If the equations in a system are not dependent, then they are independent.
If a system is inconsistent, solving it produces a false equation, such as $0=5$.
Systems of equations can be represented (and solved) graphically: equations with two variables, both to the power of 1 , would be graphed as straight lines; equations with three variables, all to the power of 1 , would be graphed as 3 -dimensional planes.

Two Variables

Type of System	Example	Nature of Solutions	Graphic
Dependent, Consistent	$\begin{array}{r} x+y=2 \\ 3 x+3 y=6 \\ \text { clue } \rightarrow 0=0 \end{array}$	Infinite number of solutions - they are the same line!	One line "on top of" another
Independent, Consistent	$\begin{gathered} x+2 y=5 \\ -2 x+y=15 \\ x=-5 \quad y=5 \end{gathered}$	Unique solution - the lines intersect at one point	Intersection
Independent, Inconsistent	$\begin{gathered} 2 x+5 y=27 \\ 6 x+15 y=39 \\ \text { clue } \rightarrow \quad 0=-42 \end{gathered}$	No solutions - the lines are parallel	

Evaluating a 2-Variable System using the $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ Forms of the Equations

Put the equations into $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ form and examine the slopes and the intercepts:

1. If the slopes are the same and the y-intercepts are the same, then the lines are the same the system is dependent and consistent.

$$
\left[\begin{array}{l}
x+y=2 \\
3 x+3 y=6 \rightarrow 3 y=-3 x+6
\end{array} \rightarrow \begin{array}{l}
y=-x+2 \\
y=-x+2
\end{array}\right.
$$

The slope is -1 and the y-intercept is 2 in both equations - they are the same line \rightarrow the system is dependent and consistent (infinite number of solutions).
2. If the slopes are the same but the y-intercepts are different, then the lines are parallel (but not the same line) and will not intersect - the system is independent and inconsistent.

$$
\left[\begin{array}{lll}
2 x+5 y=27 & \rightarrow & y=-\frac{2}{5} x+\frac{27}{5} \\
6 x+15 y=39 & \rightarrow & y=-\frac{2}{5} x+\frac{39}{15}
\end{array}\right.
$$

The slope is $-\frac{2}{5}$ in both equations but the y-intercepts are different - these lines are parallel (same slope) but different and will not intersect. The system is independent and inconsistent (no solution).
3. If the slopes are different, it doesn't matter what the y-intercepts are - the lines will always intersect at some point. The system is independent and consistent.

$$
\left[\begin{array}{lll}
x+2 y=5 & \rightarrow & y=-\frac{2}{5} x+\frac{5}{2} \\
-2 x+y=15 & \rightarrow & y=2 x+15
\end{array}\right.
$$

The slopes are different in the two equations - the lines will intersect. The system is independent and consistent (one solution).

Three Variables

Type of System	Example	Nature of Solutions	Graphic
Dependent, Consistent	$\begin{array}{rr} 2 x+y+z=3 & {[1]} \\ x-2 y-z=1 & {[2]} \\ 3 x+4 y+3 z=5 & {[3]} \tag{3}\\ {[1]+[2] \rightarrow 3 x-y=4} \\ {[2]^{*} 3+[3] \rightarrow 6 x-2 y=8} \\ \text { clue } \rightarrow \quad 0=0 \end{array}$	Infinite number of solutions - the planes intersect along a common line	Intersect along same line
Independent, Consistent	$\begin{gathered} 4 x-2 y-3 z=5 \\ -8 x-y+z=-5 \\ 2 x+y+2 z=5 \\ x=3 / 2 \quad y=-4 \quad z=3 \end{gathered}$	Unique solution - the planes intersect at one point	Intersect at same point
Independent, Inconsistent	$\begin{array}{rlr} y+3 z=4 & {[1]} \\ -x-y+2 z=0 & {[2]} \\ x+2 y+z=1 & {[3]} \\ {[2]+[3] \rightarrow \quad y+3 z=1} \tag{4}\\ {[1]^{*}(-1)+[4] \rightarrow} & \rightarrow-y-3 z=-4 \\ \text { clue } \rightarrow & 0=-3 \end{array}$	No solution - the planes are either all parallel to each other or they intersect two at a time with no point common to all three	

