Systems of Equations: Consistency and Dependency

A system of equations is **consistent** if it has <u>at least one solution</u>. A system is **inconsistent** if it has <u>no solution</u>.

Two Variables

In a system of two equations in two variables, the equations are **dependent** if one equation is a <u>multiple</u> of the other. **Dependent** systems have an <u>infinite</u> number of solutions – *every* point is a solution.

Three Variables

In a system of three equations in three variables, if the system reduces to two equations in two variables where one equation is a multiple of the other, the system is **dependent**.

Dependent systems produce the true equation 0 = 0, and are <u>always</u> consistent.

If the equations in a system are not **dependent**, then they are **independent**.

If a system is **inconsistent**, solving it produces a <u>false equation</u>, such as 0 = 5.

Systems of equations can be represented (and solved) graphically: equations with <u>two variables</u>, both to the power of 1, would be graphed as <u>straight lines</u>; equations with <u>three variables</u>, all to the power of 1, would be graphed as 3-dimensional <u>planes</u>.

Type of System	Example	Nature of Solutions	Graphic
Dependent, Consistent	x + y = 2 3x + 3y = 6 clue $\rightarrow 0 = 0$	Infinite number of solutions – they are the same line!	One line "on top of" another
Independent, Consistent	x + 2y = 5 -2x + y = 15 $x = -5 \qquad y = 5$	<u>Unique</u> solution – the lines intersect at one point	Intersection
Independent, Inconsistent	2x + 5y = 27 $\underline{6x + 15y = 39}$ clue $\rightarrow 0 = -42$	<u>No</u> solutions – the lines are parallel	

Two Variables

Evaluating a 2-Variable System using the y = mx + b Forms of the Equations

Put the equations into y = mx + b form and examine the slopes and the intercepts:

1. If the **slopes** are the **same** and the **y-intercepts** are the **same**, then the **lines** are the **same** – the system is <u>dependent and consistent</u>.

$$\begin{bmatrix} x+y=2 & \rightarrow & y=-x+2\\ 3x+3y=6 & \rightarrow & 3y=-3x+6 & \rightarrow & y=-x+2 \end{bmatrix}$$

The slope is -1 and the y-intercept is 2 in <u>both equations</u> – they are the same line \rightarrow the system is **dependent and consistent** (infinite number of solutions).

2. If the **slopes** are the **same** <u>but</u> the **y-intercepts** are **different**, then the **lines** are **parallel** (but not the same line) and **will not intersect** – the system is <u>independent and inconsistent</u>.

$$\begin{cases} 2x + 5y = 27 \quad \rightarrow \quad y = -\frac{2}{5}x + \frac{27}{5} \\ 6x + 15y = 39 \quad \rightarrow \quad y = -\frac{2}{5}x + \frac{39}{15} \\ \text{The slope is } -\frac{2}{5} \text{ in both equations but the y-intercepts are different – these lines are parallel (same slope) but different and will not intersect. The system is independent and inconsistent (no solution). \end{cases}$$

3. If the **slopes** are **different**, it doesn't matter what the y-intercepts are – the lines will always intersect at some point. The system is <u>independent and consistent</u>.

ſ	x + 2y = 5	\rightarrow	$y = -\frac{2}{5}x + \frac{5}{2}$
	-2x + y = 15	\rightarrow	

The slopes are different in the two equations – the lines will intersect. The system is **independent and consistent** (one solution).

Type of System	Example	Nature of Solutions	Graphic
Dependent, Consistent	2x + y + z = 3 [1] x - 2y - z = 1 [2] 3x + 4y + 3z = 5 [3] $[1] + [2] \rightarrow 3x - y = 4$ $[2]^*3 + [3] \rightarrow \frac{6x - 2y = 8}{6x - 2y = 8}$ clue $\rightarrow 0 = 0$	<u>Infinite</u> number of solutions – the planes intersect along a common line	Intersect along same
Independent, Consistent	4x - 2y - 3z = 5-8x - y + z = -52x + y + 2z = 5x = 3/2 y = -4 z = 3	<u>Unique</u> solution – the planes intersect at one point	Intersect at same point
Independent, Inconsistent	y + 3z = 4 [1] -x - y +2z = 0 [2] x + 2y + z = 1 [3] $[2] + [3] \rightarrow y + 3z = 1 [4]$ [1]*(-1)+[4] $\rightarrow -y - 3z = -4$ clue $\rightarrow 0 = -3$	<u>No</u> solution – the planes are either all parallel to each other or they intersect two at a time with no point common to all three	